We assemble granular chains composed of spheres of uniform diameter in different curved configurations. We study the properties of highly nonlinear solitary waves traveling in the curved channels as a function of the curve angle and of the radius of curvature, using experiments and numerical simulations. We observe that solitary waves propagate robustly even under drastic deflection, such as 90∘ and 180∘ turns. When the solitary waves encounter a sharp turn with a radius of curvature as small as one spherical particle’s diameter, we report the formation of secondary solitary waves resulting from the interaction with the guiding rail. We compare experimental results with numerical simulations based on a discrete element model that accounts for nonlinear and dissipative interactions between particles. This study demonstrates that granular chains are efficient wave-guides, even in complex geometrical configurations. Moreover, the findings in this study suggest that solitary waves could be used as novel information and/or energy carriers.